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Abstract. A mathematical model is developed which describes the steady state creep in a welded pipe which is 
subjected to a constant uniaxial end load and/or uniform internal and external pressure. The model is based on the 
Cosserat theory of plates and shells and a generalisation of Norton's law. Both asymptotic and analytical solutions 
are found and the results reveal that bending and thinning of the pipe take place on different length scales. 

1. Introduction 

The production of high quality welds is extremely important in many sections of industry. In 
the power generation industry, for instance, the failure of a single butt-weld in a steam pipe 
can be extremely costly, since the repair or replacement of the joint may require a generating 
plant to close for a long time. There have been a number of experimental and theoretical 
investigations of the complex creep processes that occur in weldments, but these processes 
are not yet sufficiently well understood for weldments to be included in most high temperature 
engineering design codes. 

Most theoretical work has involved finite element models and results for pipe welds have 
been found, for instance, by Goodall and Waiters [1], Waiters [2], Coleman et al. [3], Hall 
and Hayhurst [4] and Tu and SandstrOm [5]. Obtaining accurate finite element solutions for 
weldments is difficult and time consuming, however, due to the presence of very narrow 
material regions and stress singularities. 

Recent attempts to find a useful mathematical model have centred on an approach, first 
introduced by Nicol [6], based on the Cosserat theory of plates and shells. The major feature 
of the Cosserat theory (see Naghdi [7] for a full discussion) is that the three-dimensional 
deformation of a general plate (or shell) can be modelled exactly by replacing the plate (or 
shell) by a two dimensional Cosserat surface situated within the body, provided that to every 
point of this surface is associated both a displacement and an infinite number of extra variables 
called directors. The full Cosserat theory is extremely complicated and a simpler model, in 
which only one director is introduced, is much easier to apply. It is expected that this single 
director model will yield reasonably accurate solutions for thin plates (or shells) but it is 
hoped that it will also provide useful approximations for thick plates (or shells). It is important 
to emphasize that the Cosserat theory for plates is more general than classical theories in 
that it allows the stress component normal to the plate to be non-zero, and it is this additional 
flexibility that enables the thinning of a plate to be included within a relatively simple Cosserat 
model. 

The single director Cosserat model was used by Nicol [6] to model the creep of a plate, 
containing a weld, under uniaxial tension and he obtained solutions for the steady state strain 
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rate for a number of different weld metals and weld widths. Subsequently Nicol and Williams 
[8] found parametric equations describing how the strain rate varies with material properties 
at certain key positions within the weldment. More recently an improved model has been 
developed which includes, just outside the weld metal, both the narrow type IV region and 
the narrow heat affected zone (HAZ), and numerous numerical results illustrating the effects 
on the creep strain rate caused by changing the widths and strengths of the type IV, HAZ 
and weld regions and by varying the creep index are presented in Hawkes [9] and Craine and 
Hawkes [ 10]. The time to rupture and the rupture position have also been calculated recently 
by Newman and Craine ([11] and [12]) and Newman [13], using a Cosserat model based on 
a generalised Norton's law and a simple Kachanov-Rabotnov damage law. 

All the applications of Cosserat theory mentioned above are for plates, but in this paper 
we investigate the creep of a welded pipe, a problem of considerable practical importance. 
Attention is restricted to the steady state creep of a long straight pipe of circular cross-section 
which contains a weld. The pipe consists of two distinct uniform constituents, the parent 
material and weld metal, joined at interfaces which are normal to the axis of the pipe, and is 
subjected to a constant uniaxial tensile force at its ends and to uniform internal and external 
pressures. Additional narrow regions, such as the narrow type IV region and HAZ which 
occur in ferritic weldments, are omitted since our principal aim here is to demonstrate that the 
Cosserat model can be successfully applied to pipes. 

The relevant coordinate systems for the pipe are introduced in Section 2 and the appropriate 
generalised strain rates and stresses calculated in Section 3. After introducing a generalised 
form of Norton's law in Section 4 the set of equations governing the steady state creep of the 
pipe are derived. In Section 5 both asymptotic and analytical solutions are found, when the 
creep index is unity, and the results are discussed in Section 6. Some concluding comments 
are made in Section 7. 

2. Introduction of coordinate systems 

A brief derivation of equations governing the steady state creep of a pipe under uniaxial 
tension is given in Sections 2 to 4 for a Cosserat model. Further details can be found in 
Hawkes [9] and a full description of the general theory has been presented by Naghdi [7]. 

Consider a straight pipe of circular cross-section which at time t = 0 has constant radius 
and walls of uniform thickness h. Introduce a set of fixed Cartesian axes, referred to an origin 
O situated on the central axis of the pipe, with the unit vector k lying along this axis. The 
reference surface S of the pipe lies between its inner and outer surfaces and the position vector 
of some point r on this surface can be expressed in terms of Cartesian coordinates (z I , z 2, z 3) 
by 

r = z l i +  zzj + z3k. (2.1) 

Cosserat theory requires the introduction of curvilinear convected coordinates (~91 , ~9 2, ~3) 
such that the two-dimensional reference surface S is defined by ~3 = 0 for all time, and a 
suitable choice is the material coordinate system based on the surface S. Choose the positive 
direction of ~9 3 to be in the direction of the outward facing normal to S and let us denote ~3 by 
v. Suppose z (= ~9 2) denotes distance measured along the initially straight, but subsequently 
deformed, generator of S at some time t and ~9 (= ~l) is the angle between a radius and the 
unit vector i. The radius, R, of the reference surface, measured from the axis of the pipe, can 
be written R = R(z, t) through symmetry. 
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The Cartesian coordinates of a point on S are related to the convected coordinates 

through 

X 1 = R(z,t)cos~9, X 2 = R(z,t)sinO, x 3 = f(z , t ) ,  (2.2) 

and, on using the definition a,~ = 0 r / 0 0  '~ (c~ = 1,2), it follows from (2.1) and (2.2) that 

OR OR ~z 
a l  = R ( -  sintgi + c o s 0 j ) ,  a2 = --0~z cosOi  + -b-~-z s i n 0 j  + k. (2.3) 

These two vectors are tangential to the surface S so a3, the unit normal to S, is easy to 
calculate. Moreover, defining 

p(z , t )  = ( ( O f ~  2 (0R~2~1/2  
\ Oz ] + \ Oz ] ] ' (2.4) 

it follows immediately from (2.3) that 

a22 = p2, a12 = a21 = 0, a = det(a ,~z)  = R2p 2. (2.5) a l l  = R 2, 

Assuming that 

R ( z ,  O) = R0, 

b,~/3 = b~c~ = a3. a,~,~, I'7~/~ = F~c ~ = a 7 .  a,~,~ (c~,/3, 7 = 1,2), 

f(z, O) = z, (2.6) 

the values of a,~;~ at t = 0, denoted by Ac~Z, satisfy 

A l l  = R02, A22 = 1, A12 = A21 = 0, A = R 2. (2.7) 

It is hoped that no confusion is caused through the use in this paper of superscripts to denote 
both the contravariant components of a tensor, such as x 2, and the power of a variable, for 
example p2. 

After inverting the matrix (a,~z) to find (a '~/3) and then using a '~ = a'~Zaz, where summa- 
tion over 1 and 2 is assumed for any Greek letter repeated as a superscript and a subscript, we 
obtain 

a I • R - Z a l ,  a 2 = p -Za2 .  (2.8) 

The second fundamental form ba~ and the Christoffel symbols of the second kind F~;~ are 
defined by 

(2.9) 

and with the use of (2.3) we find that 

ROt  1 (02ROf  ORO2f~ 
bll -- p Oz' 522 = - p OZ 20Z OZ OZ2] 

1 (oRo2R or 02 ) 
= 7 5;z - z2 + g;z Oz2 ] , 

R OR 1 OR -tlr~21_ FI2 = r l l  - R Oz'  p2 Oz 

(2.10) 

(2.11) 

with all other components being zero. Recalling the initial conditions (2.6) it is easily seen 
from (2.10) and (2.11) that all components of F~. r are zero at t = 0, and that the only non-zero 
component of  b,~/~ initially is 

Bl l  = - Ro. (2.12) 
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Fig. 1. Section of deformed pipe wall. 

Let p be the position of a general point in the deformed pipe with Cartesian coordinates 
(yl, y2, y3), so that 

p = yl i + y2j + y3k. (2.13) 

In terms of convected coordinates the inner and outer surfaces of the pipe are given, for all t, 
by r = l/in and r = //out respectively, where//in and//out are constants, and hence as the pipe 
deforms the distance scale in the r-direction must vary with position and time. As a result the 
expressions relating (yl, y2, y3) to (0, z, r) can be written 

yl  : ( R  + ¢ c o s ~ )  c o s 0 ,  y2 = (R + ccos¢)  sin0, y3 = ( f _  cs in¢) ,  (2.14) 

where ¢ = ¢(z, t) is the angle between a3 and the plane perpendicular to the central axis 
of the cylinder (see Fig. 1), c = e(z, r, t) is distance in the r-direction and R and f are the 
functions introduced in (2.2). In an analogous way to the calculation of the base vectors a~ 
we can determine from equations (2.13) and (2.14) the covariant base vectors gi through use 
of 

0p (i = 1,2 and 3), (2.15) 
gi = 00i 

and go on to obtain the associated reciprocal base vectors gi and components Gij and G ij of 
the metric tensor at t = 0. With the additional initial conditions 

e(z,r,O) = r, ¢(%0) = 0, (2.16) 

it can be shown that the only non-zero initial values of the components of the metric tensor 
are 

G l l  : ( e l l )  -1 : (Ro -4- r )  2, G22 : G 22 : G33 : G 33 : 1. (2.17) 

3. General i sed strain rates and stresses 

The single director is introduced into our simple Cosserat model through the assumption that 
p can be expressed 

p(O, z, r, t) = r(O, z, t) + r d(O, z, t). (3.1) 
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When d is referred to the base vectors a i it can be shown that 

O d  _ ~ m a i  ' 
(3.2) 

where 

Od3 
~.ya - O0 aOd'y r~,~d 3 - b.y,~d3, /~3a = 00,~ + bTad.y. (3.3) 

The kinematic strain variables can now be defined by 

1 
ee,3 = -~(a,~3 - A,~3), nia = ~ i a  - A i m ,  7i = d i  - D i ,  (3.4) 

where Di and Aic~ are the values at t = 0 of di and Am respectively. Since our problem is 
axisymmetric it can be assumed that 

0 
dl = D1 = 0, - 0. (3.5) 

00 

With the aid of equations (2.5) to (2.7), (2.10), (2.11), (2.16) and the simplifications (3.5), the 
general expressions for the kinematic strain variables (3.4) are then easily calculated. 

In an analogous way to previous authors we next assume that throughout the creep regime 
the deformation of each point of the pipe from its initial position remains small. Thus, we 
define 

R = Ro(1 + eR1), f = z + e l l ,  di = Di + ~6~, (3.6) 

where the functions Rl,  fl  and ~i depend on the variables z and t only, e is a small parameter 
and terms of O(e 2) are neglected. Without loss of generality it is also assumed that 

D = (0, 0, 1). (3.7) 

With the above assumptions it can be shown that 

el2 --~e21 -m- k12 -~-k21 : k 3 1  : ~ 1  z 0, (3.8) 

and that the non-zero strain rates, to leading order in e, are 

o] 
ell ---- ~'R02/~l, e22 ---- g'~zz' t~ll = ER0((~3 + /~ l ) ,  (3.9) 

= C - -  -rto ) , = 4" O Z '  ~2 ~--g~2, ~3 =~53, (3.10) 

where throughout this paper a superposed dot denotes differentiation with respect to time t. 
Next we must define the generalised two-dimensional Cosserat stress variables in terms of 

the components a ij of the usual three-dimensional stress tensor. For our single director model 
the generalised stresses N '~, M '~ (a = 1,2) and m must be introduced and, to leading order 
in e, the appropriate expressions for the components of these stresses are 

MO,  31,) 
in in 
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m i A l / 2  = / t / o u t  Gl/2c73j ~} dr, 
o"/"in 

where 

= Gj .A ~. G = det(Gij)  = (Ro + r) 2, #j 

(3.12) 

(3.13) 

Expressions for Pin and Pout are found by solving the pair of equations 

fu u ° U t p o G l / Z r d r  = O, -- = h. Pout Pin (3.14) 
in 

Condition (3.14)1 controls the distribution of mass about the surface r = 0 (see [7] for further 
discussion). Assuming P0, the initial density of the body, is constantqt is easily shown from 
(3.13h and (3.14) that 

Uin = h 2 12 14---4 + O(r5 ' where r = ~ .  (3.15) 

In this work it is assumed that e << T << 1. 
TO develop the model further it is necessary to obtain expressions for the stress components 

0 "ij in terms of the components N ai, M ai and m i. To this end we assume that 

¢rai : aai  + ca ir ,  ~y3i : a3i, (Oz = 1, 2; i = 1,2, 3), (3.16) 

where a j i  and c °~i are constants. More complicated expressions for a °~i could be introduced 
but these would require the appearance in the model of additional generalised stresses and 
extra directors, and the model then becomes much more involved. With the aid of (3.13)1, 
(3.15)1 and (3.16), the integrals in (3.11) and (3.12) can be evaluated, retaining the leading 
order terms in the small parameter r. Inverting these expressions it follows, to leading order 
in T, that 

NIl  Ml l  Nl l  12Mll N 22 1 2 M  22 
_ _  _ _ ,  a 22 _ c22 _ _ _  

a l l  - -  , c I1 - - -  + h 3  , h 3  , ( 3 . 1 7 )  
h hRo hRo h 

N 23 12M 23 m 2 m 3 
a 23 -- c 23 -- a 32 -- a 33 -- (3.18) 

h ' h 3 ' - h '  - h 

Substituting the above results into (3.16) provides the necessary approximate expressions 
for the components of the three-dimensional stress tensor in terms of the corresponding 
two-dimensional components. 

4. Derivation of the governing equations 

Above a certain critical temperature metals, under load, exhibit a time-dependent deformation 
known as creep. The latter is normally divided into three main stages called primary, secondary 
and tertiary. The secondary creep r6gime is usually much longer than the other two and is 
often the only one included in a long term creep model. Within the secondary creep r6gime 
all strain rates are approximately constant, and Norton's law is normally used to describe the 
material behaviour. Hawkes [9] has shown that the appropriate generalisation of Norton's law 
for the pipe problem being considered here is 

, i , _  A I N * ]  ~ ON .2 
2N* [a--~J Off, ' (4.1) 



Cosserat theory, 523 

where ,I, and • denote the sets of variables 

,I, = (%3, n,~3, K3,~, % ,  73), @ = (N ' ~ ,  M '~;~, M c~3 , m c~, m3), (4.2) 

and a typical stress 0-¢, material strength A and creep index n are all constants. Note that, 
because of invariance requirements, N '~  has been replaced in (4.2)2 by N ' '~  which is defined 
by 

N ' ~  = N I ~  = N ~/3 + M'r%~ 7. (4.3) 

The Von Mises equivalent stress 0-* and stress invariant N*, which appear in (4.1), are defined 
by 

0-*2 3 (0-}_ l~0-k -55i 0-,,~) , 
~/JOUt 

N .2 = h 0-*2 dr. 
in (4.4) 

Using the metric tensor gij it is straightforward to write 0 -*2 in terms of the contravariant 
components 0-'J and, with the aid of (2.12), (2.17), (3.15) to (3.18) and (4.3), it then follows 
from (4.4)2 that the leading order terms in N .2 become 

N*2 4 _ 12 22 2 R~(N'II) 2 -+- 12--~(MII) 2 -+- (N22) 2 AN22M22 --}- ~ ( M  ) 
h Ro 

+(m3) 2 2Apllm3 N22rr~3 ZM22m3 _ R 2 N t l I N  22 _ R o N 2 2 M  11 
- R ° ~ '  - + R0 

2 36 23 2 Ro 11 22 ANZ3M23 + ~-g(M ) . (4.5) -12 -hTM M + 3(N23) 2 - R0 

Define co by 

A ( N * ~  '~ 
c o -  2N* \~-7-h/ ' (4.6) 

then on substituting (4.5) into (4.1) and using equations (3.8) to (3.10) and (4.2) we obtain 

ERZR1 = co(2R a N ' ' ' -  RZN 22-  RZm3), (4.7) 

2 M22 m3), dfl c°(-R2°N'll + 2N22 - R°Ml l  Ro 
--riTz = (4.8) 

( 4 2 ) 
2 4 R ~ M l l - 1 2 ~ T M  , ~(Ro~3 + R0/~I) = co _RoNZ2 + h 2 .._ R0 22 (4.9) 

(d~2 d2/~l '~ ( _ A N 2 2 1 2 R 2 M f l  24 22 rr~3) 
no + E '  (4.10) 

M2 2 
~ 3  = co - R 2 N t l l  - N22 -+- Ro - -  + 2m 3) , (4.11) 

s52 = 6w ( N  23 1 M 2 3 ~  (4.12) 
Ro / '  
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E d~3 1_~22 M23) .  --~-z = 6w ( - ~ N 2 3  + h ] (4.13) 

In stating equations (4.7) to (4.13) higher order terms in r and ~ have been neglected and, 
since we are restricting attention to steady state creep, ordinary derivatives with respect to z 
are now appropriate. It is assumed that the terms appearing in (4.7) to (4.13) balance to O(~) 
and hence choosing e = 1, as we shall do in Section 5, is equivalent to a simple rescaling of 
the stresses. 

Since creep in a metal is a very slow time-dependent deformation the inertia terms in the 
plate equations stated in [7] can be neglected. Hence, for the problem under discussion, the 
linearized forms of these plate equations become 

d N  22 dM 23 
- -  -- 0, - -  -- R0 MI1 = m 3 - po L3, (4.14) 

dz dz 

d N  23 dM 22 
- -  -- RoN II - po F3,  - N 23, (4.15) 

dz dz 

where, in the absence of body forces, the contravariant variables L 3 and F 3 depend on 
the applied pressures. The constant internal and external pressures, pi and Pc respectively, 
satisfy 

cr~ = --Pi on r = Pin, 0 .3 = --p, on r =//out. (4.16) 

Then, defining the sum and difference of the pressures by 

Ps = Pi + Pe, Pd = Pi -- Pe, 

it Can be shown that, neglecting terms of O(r2), 

(4.17) 

N 22, N 23, M 22, M 23 (4.19) 

and the associated strain rates 

R d/~l, ~3. (4.20) / l ,  /~1, (~2-- O'-~Z 

Eliminating L 3 and F 3 using equations (4.18), M II by equation (4.9) and N I11 and m 3 by 
equations (4.7) and (4.1 1), the remaining equations (4.8), (4.10), and (4.1 2) to (4.15) can be 
expressed as a set of eight first order differential equations in the stresses 

This set of equations must be solved when the material parameter A and creep index n are 
constant within the parent material and weld metal separately, but change discontinuously 
at the interfaces between these regions. Due to symmetry only one half of the pipe need 
be considered in our solution. From the form of the differential equations it is evident that 
to complete the system the eight variables (4.19) and (4.20) must all be continuous at the 
parent-weld interface (i.e. z = 0) and, in addition, a total of eight boundary conditions must 
be applied to these variables at the end of the pipe (z --+ - o o )  and at the centre of the weld 
(z  = t). 

PO F3 = Pd -- Tp---L (4.18) 
2 
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At z = l symmetry implies that 

d/~l d] l  dg3 d N  22 d M  22 
dz - 0 -  d~ - d z '  dz - 0 =  dz (4.21) 

Noting from (4.14)1 that condition (4.21)4 is identically satisfied, it is easily seen with the aid 
of (4.13) and (4.15)2 that the requirements (4.21) are equivalent to 

d/~l d f l  0 - -  -- M 23 = N 23 on z = I. (4.22) 
dz dz 

As the ends of the pipe are approached the three-dimensional stress components a~ and a~ 
can be specified, and hence 

N 22, M 22, N 23 and M 23 are known as z ~ - c o .  (4.23) 

Solutions of  the set of  equations (4.7) to (4.15) that satisfy conditions (4.22), (4.23) and the 
continuity of the variables (4.19) and (4.20) at the interface z = 0 are found in the following 
section. 

5. Solution of the governing systems of equations 

It follows immediately from equation (4.14)1, condition (4.21)4 and the continuity of N 22 
at the parent-weld interface that N 22 is constant, = N ~  say, throughout the pipe. Using the 
latter as a typical stress value we introduce the non-dimensional variables 

2~2creR0 2Rlach • 2ezzo'ch ~2 -- , (5.1) 
R1 -- AaNoo ' g'22 -- AaNoo ' AaN~ 

2~3crch - R 2 N  '11 m 3 

~ 3 -  AaNoo' N~ - Noo ' ff23 = N~o' (5.2) 

R 3 M I I  R°M22  -~/'23 - R°N23 
M ~ _  h2N~ ' . ~ 2 _  h2N~ ' h N ~ '  (5.3) 

M 23 p, Ro PdRO 
/~f23-  hN~ '  f s -  Noc' f i g -  Noo' (5.4) 

z A 
~" = Roo' A = A---~' (5.5) 

where Aa is the constant denoting the strength of the parent material. 
For real materials the creep index, n, usually varies between 2 and 10 but in the remainder 

of this paper we shall assume n = 1, the 'elastic case',  since this postulate greatly simplifies 
the analysis and is not expected to change the qualitative features of the solution. Using (5.1) 
to (5.5) and n = 1, it is straightforward to show that equations (4.7) to (4.13) (with e = 1), 
(4.14)2 and (4.15) reduce to 

h i  = A,(2*~ - 1 - r~3), ~22 = -A.(-*~ + 2 - m3), (5.6) 

~3 + h i  = fix(-1 -1- 243~r~ - 12/17/22), (5.7) 
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d~2 d2hl -- . 4 ( - 2  - 1237/'~ + 243~r22 + r~3), (5.8) 
r d~ d~ ---T- 

~3 = A ( - N ]  - 1 + 2if'z3), ~2 = 6A(N23  - 2~r23), (5.9) 

" d & 3  1 
d83 = 72AM23, r -  -- TT2 3 -I- ~7"j0s (5.10) r--~- d~" ' 

- d37/2 = N23. (5.1 1) d2~r23 = N~ -rid + ~ rp,, r d~, r d~ 

Equations (5.6)1, (5.7) and (5.9)1,2 combine to give the four algebraic equations 

- 1 k N~=- ~ 1  (3.4 + 2Rl + ~3), M~ = 24.~ ( I + 63 + A) + ! -~  f 2 , 2  (5.12) 

r~3 = ~-~(3A + h i  + 2~3), t~2 = 6A(N23 - 3~r23). (5.13) 

On defining a new variable ~ through 

- - dh l  
S = r~2 - d---~' (5.14) 

and with the aid of equations (5.12) and (5.13), the second order differential equation (5.8) 
can be replaced by the pair of first order equations 

d~ 1837/2 N ) _ 1'- 1"- = + + 

dh l  _ 6rA(N23 - 2~f23) - ~. (5.16) 
d~ 

Moreover, using (5.12) and (5.13) equations (5.10) and (5.11) become 

rd~3 - - dJl~f23 1 (3.~ + h i  + 263) + ~r/3s (5.17) - -~  "- 72AM23, r d---~ - 3-A 

d N 2 3 _  1 - 1 d-~ r2 
r d~ - ~--~(3A +2J ~1+~3) -P , /+Tr /~ ,2  , r d$ ---~- J~/'23. (5.18) 

When known pressures are applied to the pipe equations (5.15) to (5.18) form a system of 
six first order ordinary differential equations for the variables S, R1, 83, 3~r23, N23 and 37I 2. 
After solving this system subject to appropriate boundary conditions the four further variables 
~1,  _/~r~, m3 and ~2 can be determined immediately from equations (5.12) and (5.13). Note 
that ~22 can then be calculated using equation (5.6)2 or the equation 

~22 = - h i  - ~3, (5.19) 

which is obtained by combining equations (5.6) and (5.9)1 and which is the leading order 
form of the incompressibility condition. 
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For a homogeneous pipe, in which the parent and weld materials are identical, all z- 
dependence disappears from our problem. In this situation Hawkes [9] has shown that the 
simplified form of equations (5.15) to (5.18) yields stresses which agree to first order with the 
results of Bailey [14] (stated in a simpler form in Finnie and Haller [15]) for the creep of an 
internally pressurised, homogeneous, straight cylindrical pipe under plane strain conditions. 

Asymptotic solution 

Following the latter encouraging observation we now return to the system (5.15) to (5.18) 
for an inhomogeneous pipe and obtain an approximate solution as 7- --+ 0 using matched 
asymptotic expansions (see Bender and Orszag [ 16] for details of the general method). Since 
it is the jump in ft, at the parent-weld interface ~, = 0 which causes the deformation to vary 
with ~,, we expect any boundary layer to appear near this interface. 

Outer solution 
To investigate the form of the solution at large distances from the interface it is necessary 
to introduce a transformed non-dimensional coordinate, z*, and some transformed dependent 
variables. To obtain the correct leading order terms in the dependent variables it is found that 
the appropriate rescaled variables are 

z* = 7--1/25, N~* 3 = T1/2-/~23 , 

M~* 2 = T.M 2, ~ = 7-1/2~2 , 

m~* 3 = 7--1/211.7/23 , (5.20) 

S ,  = 7-1/2~. (5.21) 

The leading order approximations in the asymptotic series representations for the dependent 
variables can now be found on using the expansions 

S* ~ So -1- T l /2g l ,  h l  '~ /~10 q- T1/2/~ll, (5.22) 

~3 "~ ~30 + T1/2~31, M2* 3 '~ M30 -I- TI/2M31, (5.23) 

N2* 3 '~ N3o "q- TI/2N31, m2* 2 "~ M2o -'1- T1/2M21, (5.24) 

¢~ ~'~ ¢~20 "1- T1/2¢~21, (5.25) 

in which all terms of O(T) and higher are neglected. 
On using (5.20) to (5.25) the system of equations (5.15) to (5.18) yields, on equating terms 

of O(1), 

d/~lo dSo = 18-~M2o, - So, (5.26) 
dz* dz* 

d~30 _ 72-AM3o, 3.4 +/~10 + 2~30 = 0, (5.27) 
dz* 

d N 3 o  A dM2o 
dz* 3 (3-4 + 2/~10 + t~3o) - rid, dz* = N3o, (5.28) 

and equation (5.13)2 gives 

~20 = 6fi-N30. (5.29) 
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After eliminating 630 with the use of equation (5.27)2, the four equations (5.26) and (5.28) 
combine to produce the single fourth order differential equation 

d4/~lO 
dz,------- T + 9/~1o = 9fi~(2/~d -- 1), (5.30) 

with solution 

4 
/~10 = Z Cie)~'z" + -4(2pd - 1), 

i=l 
(5.31) 

where Ci are constant and hi (i = 1 , . . . , 4 )  are the four complex numbers satisfying 
,~4 _~_ 9 = 0. The corresponding solutions for S0, M20, 830, M30 and N30 are easily cal- 
culated using the solution (5.31) together with equations (5.26), (5.27) and (5.28)1. 

Equation (5.30) is of identical form to that found using the classical theory of plates and 
shells (see Timoshenko [17]) for the radial displacement of an elastic cylindrical pipe of 
circular cross-section and constant thickness under symmetric loading. Within the classical 
theory the stress perpendicular to the reference surface is taken to be zero and there is no 
attempt to model the thinning of the pipe walls. The fact that (5.30) governs the outer solution 
shows that far away from the parent-weld interface the asymptotic solution as T --+ 0 is 
dominated by the bending of the pipe's reference surface. 

Inner solution 
To determine the solution in the boundary layer close to the weld interface a new length scale 
must be introduced. The six continuity equations at the interface can be satisfied only if the 

system of equations remains of sixth order and to achieve this, with 63 and 37/23 not identically 
constant, the necessary transformations are 

= T-1/2Z*, ]~f23 = TI/2M~3. (5.32) 

Replacing (5.23)2 by 

M23 ~ M30 +   /2 r31, (5.33) 

but leaving the remaining equations (5.22) to (5.25) unchanged, the leading equations now 
become 

dSo dRlo dN30 dM20 
- 0 . . . . . .  (5.34) 

d~ d~ d~ d~ ' 

d83o - ^ d J l ~ / 3 o  1 
- 72AM30, - -  - - - ( 3 , 4  +/~10 + 2830). (5.35) 

d~ d~ 3A 

It follows immediately from equations (5.34) that within the inner region 

~-~0, R10, N30 and M20 are all constant, (5.36) 

and equations (5.35) then combine to produce a second order differential equation for 630 with 
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Fig. 2. Inner and outer regions (in diagrammatic form) for asymptotic solution, with the corresponding notation. 

solution 

(~30 -=" KI e-v'a-g~ + Kze vffg5 3A /~1o 
- 2 - 2 ' (5.37) 

where K1 and K2 are constants. The corresponding value of 217/3o is calculated using (5.35)1. 

Matching inner and outer solutions 
As shown in Fig. 2 there exists an inner boundary layer, which surrounds the parent-weld 
interface z = 0, and two outer regions, one in z < 0 and the other in z > 0. Recalling (5.5)2 it 
is assumed that .,{ = 1 and fi, = Ab, a constant, in the parent material and weld respectively. 
Metallurgical examination suggests that this assumption of two distinct homogeneous regions 
is a good approximation. Since the inner region bridges the parent-weld interface, the inner 
solution must satisfy all the continuity conditions at z = 0, where _A jumps from 1 to Ab. 
Let us attach superscripts o and i to all dependent variables in the outer and inner regions 
respectively and, further, use additional superscripts a and b for regions where z < 0 and 
z > 0 respectively. 

In the outer region where z < 0 it follows immediately from (5.27)2 and (5.31) that 

4 
" Oa  RI° = Z ~a  Aiz* w4e + 2/)d - 1, 

i=1 

where 

A1 = --A3 = (1 .5)1 /2(1  + i),  

33 8 - 3 I .  
2 2R7 ' (5.38) 

/~2 --~ --A4 = ( 1 . 5 ) 1 / 2 ( 1  - i ) .  (5.39) 

Recalling the system of equations (5.26) to (5.28), the four stress components appearing in 
(4.23) remain finite as z -+ - c o  only if 

C ;  = 0 = C,~. (5.40) 

Analogous to (5.38) the outer solution in the region z > 0 is 

4 
• • 1 • ob R~ b = ~ cbi ea~" + Ab(2Pd -- 1), 6~b = _3 ab  R,o. (5.41) 

i=1 

With the aid of equation (5.28) and the earlier transformation of variables, it is easily shown 
that conditions (4.22)1,4 are equivalent to 

d/~0b - -  0 d31/~7~ 
- -  on z* = I/(rU2Ro). (5.42) 

dz* dz .3 
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Substitution of (5.41)1 into (5.42) then provides two equations linking the coefficients C~. 
Moving to the two inner regions it follows from the continuity requirements on the variables 

(4.19) and (4.20), with the aid of (5.14), (5.34) to (5.36) and the relevant transformations of 
variables, that S0,/~10, N30 and M20 must all be continuous at z = 0, and hence that throughout 
both inner regions 

S~ = SC, _¢i]o = k c, U~o = N c, M~o = M c, (5.43) 

where S ¢ , / ~ ,  N ¢ and M ~ are constants. With the use of (5.35)1 and (5.37), the remaining 
continuity conditions on M 23 and ~3 then yield 

3 3 
K~ + K~ - ~ = K~ + K b -  -~ Ab, (5.44) 

(5.45) 

The ten additional equations required to allow determination of all the constants in the 
leading terms in our asymptotic solution are obtained from use of the matching principle. Since 
our inner and outer solutions are exponential the required matching is most easily obtained 
using 

h m  (F ia) = lim (F°a), lim (F ib) = lim (F°b), (5.46) 
5---*- oo z*--- ,0- 5 -++00  z* ----,0+ 

where F denotes the variables ~3o, So, /~lo, M2o and N3o in turn. With the aid of (5.26), 
(5.28)2, (5.38), (5.40), (5.41) and (5.43) conditions (5.46) lead to 

2 4 

K'~ = 0 = K~, ~ CaAi = -5;~ = ~ C~ki, (5.47) 
i=1 i=1 

2 4 

C~ + 2Pal - 1 = Rc = ~ C b + Ab(2Pa - 1), 
i=1  i=1  

(5.48) 

2 4 

Z CaA ? _18M c A b l Z  b 2 ~ =  = C~ A i ,  
i=1 i=1  

(5.49) 

2 4 

Z caA ~ _ l S N  c A b l Z  b 3 
i=1 i=1 

(5.5O) 

All the constants can now be determined. 
In terms of the outer length scale z* the composite solution can be expressed 

2 

Cae ~ *  + 2/5d -- 1, z* ~< 0 
i = l  

/~10 
4 

C~e :~z* + Ab(2pd- 1), 
i = l  

0 ~< z* <~ l* 

(5.51) 
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3(1 - Ab) eVffg,--,/2:. 1/~ 3 
2--O-7~b~b) ~ lO 2' 

53o = 3Ab(Ab-  1) _vq-g~_-,/2:. 1/~1o_ 3 
2(1 + Ab) e 2 -~Ab, 

z* <~O 

O<~z*<~l* 

(5.52) 

where l* = I /(r  I/2R0). Equation (5.51) shows that when z* is O(1) (i.e. z = O(hRo)1/2)/~10 
is largely determined by the bending solution, whereas when z* is O(r  1/2) (i.e. z = O(h)) 
/~10 is approximately constant and no bending is observed. In an analogous way (5.52) reveals 
that the rate of thinning ~3o is determined by the solution/~10 when z* is O(1), but is similar 
to the flat plate solution when z* is o(r l /2) .  The result that bending and thinning occur on 
different length scales is assumed by Taheri [18] in his calculations of creep strain rate. 

Analytical solution 

The governing system (5.15) to (5.18) can be written in the matrix form 

X I = L X  + B, 

where a prime denotes differentiation with respect to 5,, 

X T ~ 2  

0 0 
0 0 
0 0 

L =  
18 0 
0 --6T 
0 72r - l  

/17/23 ~ ]~r23 , 

r -I  0 0 0 
0 0 (37) - I  2(3T) -1 
0 0 2(3r) -1 (3r) -1 
0 0 - 6  -I  6 -1 

6T --1 0 0 
0 0 0 0 

(5.53) 

~ /A,  J~l/A, ~3/A,], (5.54) 

(5.55) 

1 1 1 1, 3 0,01 (5.56) B y = 0, ~--1 + ½Ps - ~Pd~-, r -  + ~ f s  - p d r  - ~ ,  , 

and to conclude this section this system is solved explicitly. The general solution to (5.53) 
is 

6 

X = ~ aiCie ~ + Xc, (5.57) 
i=l 

where the #i are the roots of the sextic equation 

p6 _ (48r-2 + 13/6)#4 + 168#27.-2 _ 432r-4 = 0, (5.58) 

Ci are the eigenvectors corresponding to each #i and 

[ 1  pd 1 1 ] 
X f  = - ( L - I U )  y = + ~-~, 0, 0, 0, - 1  + 2/5d - ~/Ssr,-1 --/Sd -- ~/5~r . (5.59) 

b in the parent and weld regions respectively, are The constants ai,  which equal a~ and a i 
determined by applying the conditions 

d2f/'2 - 0 = -/~'23 as 5" --+ -oo ,  (5.60) 
d5 
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Fig. 3. Plots o f / /~  against z* (=  rt/2z/h), for stated values of the weld width l*, when r = 0.1, Ab = 10, 

Ps =p , t  = 0 .  

M2 N23, 5:/z3, h i  ~, ~3 continuous at ~" = 0, (5.61) 2~ 

N23 = 0 =/17/23 = ~ at ~ = I/Ro. (5.62) 

A solution to the system (5.15) to (5.18) can thus be found directly, but some of the 
important qualitative features of this solution are not obvious from the form of expression 
(5.57). 

6. Results 

The detailed analysis in Section 5 enables us to calculate both the analytical and asymptotic 

solutions for the special case n = 1. Figure 3 shows the analytical solution for ~1, the 
non dimensional rate of change of radius of the reference surface, in a thin pipe (T = 0.1) 
containing a soft weld (Ab = 10), under uniaxial tension with no applied pressures (Ps = 
Pa = 0), plotted against the outer length scale for a variety of weld widths (l* = 1/2, 
1 and 3, approximately equivalent, in dimensional variables, to 1 = 1.6h, 3.2h and 9.5h). 
Figure 3 confirms that the pipe bends over a long length scale, a result which is consistent 

with classical plate theory. It is also evident from Fig. 3 that the value of/~1 on the reference 
surface is negative everywhere (i.e. the radius of the pipe's reference decreases with time) 
and that the magnitude of the strain rate in the soft weld region is greater than its value in 
the much stronger parent material. When the width of the weld decreases Fig. 3 reveals that 
the maximum magnitude of the strain rate at the centre of the weld also decreases. Results 
qualitatively similar to those shown in Fig. 3 are obtained when the thickness of the pipe walls 
is reduced, but all other parameters are unchanged. 

It is important to note that for the particular values of the parameters leading to Fig. 3 the 

maximum percentage difference in h l  between its analytical and asymptotic values is about 
5% of its asymptotic value, and this maximum occurs close to the parent-weld interface. Not 
unexpectedly the percentage difference decreases when the ratios Ab and r decrease. 

Plots of ~3 against distance are shown in Fig. 4 with, again, r = 0.1, A6 = 10 and 
Ps = Pa = 0. It is important to note that distance in Fig. 4 is the inner length scale ~ (= z /h )  

whereas Fig. 3 uses the outer length scale z* (= yl /Zz/h) .  T h e  variable ~3 is related to the 
rate of thinning of the pipe walls. Figure 4 clearly shows that the thinning rate changes from 
its constant value in the parent material to the different constant value in the weld zone within 
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Fig.  4. Plots of  ~3 against -~ ( =  z / h )  w h e n  l = 3h ,  r = 0.1, Ab = 10, p~ = Pa = O. 
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Fig.  5. Plots of /~ l  against z* ( =  T 1 / 2 z / h ) ,  w h e n  l* = 4, r = 0.1, Ab = 10, p~ = 3, Pd = I. 

a relatively narrow region close to the interface. This region has approximate width h, which 
is the same length scale that governs the thinning of a plate. 

Hawkes [9] has calculated results, analogous to those discussed above, for a wide hard 
weld (Ab = 0.1) in a non-pressurised pipe under uniaxial tension. As expected the strain rates 
now have their maximum magnitudes in the parent material. Hawkes' results and the ones 
shown in Fig. 4 demonstrate, not surprisingly, that the most thinning of the pipe walls occurs 
in the softer material, wherever that material lies. 

Finally, two sets of results are presented for pipes subjected to internal and external 
pressures, in addition to tensile loading. For the choice p~ = 2.0 and pe -- 1.0 (i.e. Pd = 1.0 

O_ 
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Fig. 6. Plots of  J~l against z* ( =  7-1 /2z /h ) ,  w h e n  l* = 4, 7- = 0.1, Ab = 10, p ,  = 3, Pd = - 1. 
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and ps = 3.0), but all other parameters as for Fig. 3, the strain rate -~l on the reference surface 
is plotted against z* in Fig. 5. Observe that in this case the strain rate is everywhere positive 
and so the radius of the reference surface increases with time. 

When the internal and external pressures are changed to pi -- 1.0 and Pc = 2.0 (i.e. 
Pd = - 1 . 0  and ps = 3.0) the resulting strain rate on the reference surface is shown in 
Fig, 6. In this situation the strain rate is negative and hence the radius of the reference surface 
decreases with time. 

One important, though unfortunate, feature of Figs. 3 to 6 is the appearance of a small 

oscillation about the expected form of solution. In Fig. 4, for instance, the magnitude of ~3 in 
the parent material decreases from its uniform value as the interface is approached and then, 
after a rapid change near ~ = 0, overshoots its uniform value at the centre of the weld region. 
This oscillation is due to the presence of complex roots for Ai in the asymptotic solution 
(5.51) or, equivalently, the appearance of complex roots #i in the analytical solution (5.57). 
Fortunately, the effect of these complex roots on the overall form of solution is small and the 
oscillation is expected to become less evident as n increases. 

7. Conclusion 

With the use of a Cosserat model which includes a single director both asymptotic and 
analytical solutions have been obtained in this paper for a thin pipe under constant tensile end 
loading and optional pressure loading. The pipe may inflate or narrow in time depending on 
the relative magnitudes of the applied pressures and tensile force. The asymptotic results have 
shown that for a thin walled pipe the thinning of the pipe walls occurs over a much shorter 
length scale than that associated with the bending of the pipe. Moreover, the first term in the 
asymptotic series has been shown to yield results which are very close to the exact solution 
of the system of  differential equations obtained with our model. 

Results have been obtained in this paper for thin walled pipes in which the materials satisfy 
a generalised Norton's law with creep index equal to unity. Extension of this model to more 
realistic values of the creep index is expected to be straightforward. 
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